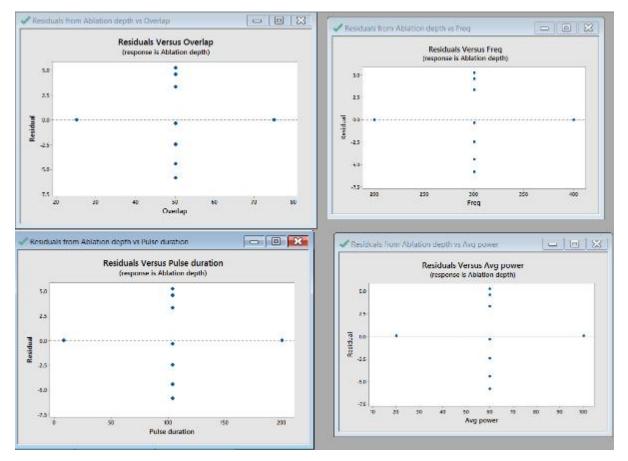
ANALYSIS OF THE RESULTS FOR JUMMA MACHINE

Objectives of the DOE

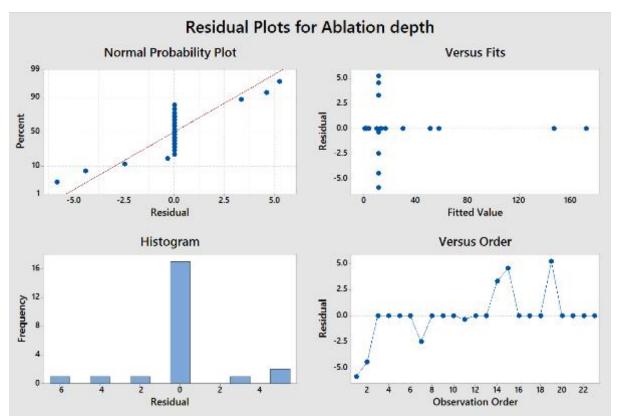
- Primary objective: Find the significant factors affecting the response function in this case Ablation depth
- Secondary Objective: Devise a model for the relationship between Response function and Ablation depth
- Tertiary Objective: Confirm the model with confirmatory runs
- 1. Steps conducted
 - a. DOE conducted with 4 factors to find out significant factors (16 runs)
 - b. Try to gauge the important factors and detect curvatures (7 center points)

c. Conducted 8 more experiments to model an equation for the response found. (8 axial points augmented on DOE to model ablation depth using face centered method)

Following are the Results for <u>ABLATION DEPTH</u> (response function)


Factors affecting the Ablation depth are

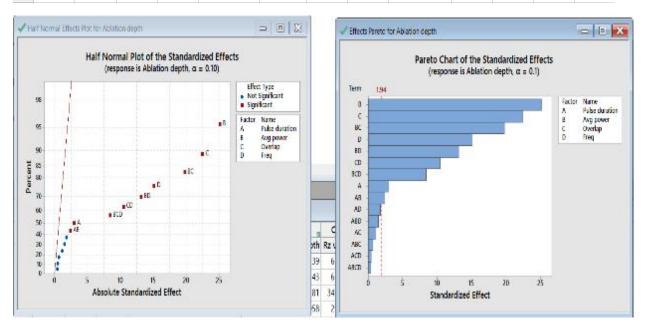
- 1. Pulse duration
- 2. Overlap
- 3. Freq
- 4. Avg Power


The factorial analysis was conducted with all terms included. Here are the results

STEP 1: FACTORIAL ANALYSIS WITH ALL VARIABLES

Residual vs Variables

Conclusion – there is a problem as the residuals are not random for all levels

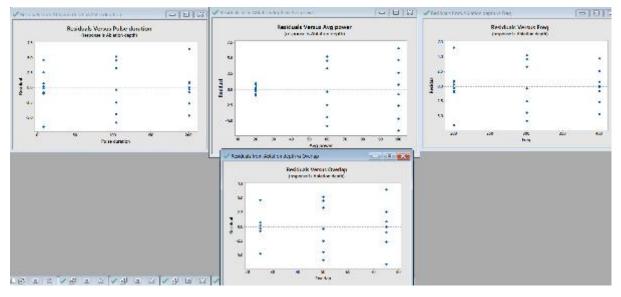


Residuals vs Fitted, Histogram, Normality of residuals and Residual vs order

Conclusion – the model cannot be utilized and residuals vs fitted show concentration on the left.

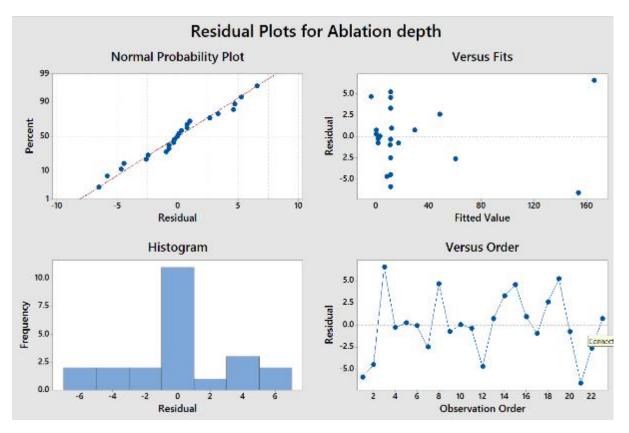
Data points sheet

÷	C1	C2	C3	C4	C5	C6	C7	C8	C9 🛛	C10 🚽	C11	C12	C13
	StdOrder	RunOrder	PtType	Blocks	Pulse duration	Avg power	Overlap	Freq	Ablation depth	Rz value	FITS1	RESI1	
1	31	2	0	1	104	60	50	300	5.139	6.7325	10.989	-5.85007	
2	30	3	0	1	104	60	50	300	6.543	6.5886	10.989	-4.44563	
3	8	4	1	1	200	100	75	200	172.181	34.7602	172.181	-0.00000	
4	2	5	1	1	200	20	25	200	1.058	2.9709	1.058	-0.00000	
5	1	6	1	1	8	20	25	200	0.305	2.8620	0.305	-0.00000	
6	13	7	1	1	8	20	75	400	1.630	2.8769	1.630	-0.00000	
7	29	8	0	1	104	60	50	300	8.506	7.3554	10.989	-2.48290	
8	11	9	1	1	8	100	25	400	0.838	21.8105	0.838	0.00000	
9	3	10	1	1	8	100	25	200	16.388	37.9083	16.388	0.00000	
10	14	11	1	1	200	20	75	400	3.090	3.4436	3.090	-0.00000	
11	27	12	0	1	104	60	50	300	10.642	9.8387	10.989	-0.34691	
12	12	13	1	1	200	100	25	400	3.497	24.9796	3.497	-0.00000	
13	4	14	1	1	200	100	25	200	29.928	33.7215	29.928	0.00000	
14	28	15	0	1	104	60	50	300	14.307	9.3729	10.989	3.31815	
15	25	16	0	1	104	60	50	300	15.569	11.7102	10.989	4.58045	
16	6	18	1	1	200	20	75	200	12.818	13.4966	12.818	-0.00000	
17	5	20	1	1	8	20	75	200	9.578	4.4498	9.578	-0.00000	
18	15	22	1	1	8	100	75	400	50.949	18.9417	50.949	0.00000	
19	26	25	0	1	104	60	50	300	16.216	10.4101	10.989	5.22691	
20	10	28	1	1	200	20	25	400	0.679	2.7754	0.679	0.00000	
21	7	29	1	1	8	100	75	200	147.061	30.3521	147.061	0.00000	
22	16	30	1	1	200	100	75	400	57.720	18.5460	57.720	0.00000	
23	9	31	1	1	8	20	25	400	0.883	4.0989	0.883	0.00000	
24													


Terms which show the most significant terms.

Conclusion: Remodel with only the significant terms

STEP 2: RE-ANALYZE WITH SIGNIFICANT TERMS IE (P<0.1)


Now the model was remodeled with only the significant terms

Residuals vs variable

Conclusion- Residual vs avg power shows an increasing trend, which can be got ridden off through a transformation

4 in 1 residuals graphs after remodelling with only significant terms

Conclusion – The histogram plot seems acceptable, residual vs order is random which is indicating no time trend.

However the residual vs fit shows a clustering for the low values and 2 outliers at the right side. The outliers were not deleted.

ANOVA checking

	Tapli cultur	10012 Millin	ow Help A	ssistant			_ 8
		L AL AL	005	068	A 0 m	①頃』■回帰」た計せる書がなく	
- A & -	+ 7 4		<u> </u>	(0)	100		
Pulse duration	1	177.8	177.8	7.98	0.015	5	^
Avg power	1	12573.1	12573.1	564.41	0.000	0	
Overlap	1	10072.7	10072.7	452.17	0.000	0	
Freq	1	4557.3	4557.3	204.58			
2-Way Interactions		13532.9	3383.2	151.87	0.000		
Pulse duration*Avg p		114.7	114.7	5.15			
Avg power*Overlap	1	7791.2	7791.2				
Avg power*Freq	1		3453.8				
Overlap*Freq	1		2173.2	97.55			
3-Way Interactions Avg power*Overlap*Fr	1 eg 1		1419.7 1419.7	63.73 63.73			
Curvature	eq 1	2106.5	2106.5	03.73 94.56			
Srror	12	267.3	22.3	51.30	0.000	v	
Lack-of-Fit	6	147.7	24.6	1.24	0.402	2	
Pure Error		119.6	19.9	1.01	0.100		
Total		44707.4	2000				
Model Summary							
4.71981 99.40% 98.9		7.29%					
Coded Coefficients							
Coded Coefficients Term	Effect	Coef	SE Coef	T-Value	P-Value	VIF	
Cerm	Effect	Coef 31.79	SE Coef 1.18	T-Value 26.94	P-Value 0.000		
Term Constant	Effect 6.67						
Term Constant Pulse duration	6.67 56.06	31.79 3.33 28.03	1.18	26.94 2.83 23.76	0.000 0.015 0.000	1.00	
Term Constant Pulse duration Avg power Overlap	6.67 56.06 50.18	31.79 3.33 28.03 25.09	1.18 1.18 1.18 1.18	26.94 2.83 23.76 21.26	0.000 0.015 0.000 0.000	1.00 1.00 1.00	
Term Jonstant Pulse duration Avg power Joyerlap Freq	6.67 56.06 50.18 -33.75	31.79 3.33 28.03 25.09 -16.88	1.18 1.18 1.18 1.18 1.18 1.18	26.94 2.83 23.76 21.26 -14.30	0.000 0.015 0.000 0.000 0.000	1.00 1.00 1.00	
Term Constant Pulse duration Avg power Dyverlap Prag Pulse duration*Avg power	6.67 56.06 50.18 -33.75 5.36	31.79 3.33 28.03 25.09 -16.88 2.68	1.18 1.18 1.18 1.18 1.18 1.18	26.94 2.83 23.76 21.26 -14.30 2.27	0.000 0.015 0.000 0.000 0.000 0.000 0.042	1.00 1.00 1.00 1.00	
Yerm Constant Vulse duration Vverlap Yreq Vulse duration*Avg power vvg power*Overlap	6.67 56.06 50.18 -33.75 5.36 44.13	31.79 3.33 28.03 25.09 -16.88 2.68 22.07	1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18	26.94 2.83 23.76 21.26 -14.30 2.27 18.70	0.000 0.015 0.000 0.000 0.000 0.042 0.000	1.00 1.00 1.00 1.00 1.00	
Term Constant Pulse duration Way power Dwerlap Preg Pulse duration*Awg power Awg power*Overlap Awg power*Freg	6.67 56.06 50.18 -33.75 5.36 44.13 -29.38	31.79 3.33 28.03 25.09 -16.88 2.68 22.07 -14.69	1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18	26.94 2.83 23.76 21.26 -14.30 2.27 18.70 -12.45	0.000 0.015 0.000 0.000 0.000 0.042 0.000 0.000	1.00 1.00 1.00 1.00 1.00 1.00	
Term Constant Pulse duration Avg power Overlap Freq Pulse duration*Avg power Avg power*Overlap Avg power*Freq Overlap*Treq	6.67 56.06 50.18 -33.75 5.36 44.13 -29.38 -23.31	31.79 3.33 28.03 25.09 -16.88 22.68 22.07 -14.69 -11.65	1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18	26.94 2.83 23.76 21.26 -14.30 2.27 18.70 -12.45 -9.88	0.000 0.015 0.000 0.000 0.000 0.042 0.000 0.000 0.000	1.00 1.00 1.00 1.00 1.00 1.00 1.00	
Term Constant 2015e duration Avg power Freq Pulse duration*Avg power Avg power*Overlap Avg power*Freq Overlap*Freq Avg powerVoverlap*Freq	6.67 56.06 50.18 -33.75 5.36 44.13 -29.38	31.79 3.33 28.03 25.09 -16.88 2.68 22.07 -14.69 -11.65 -9.42	1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18	26.94 2.83 23.76 21.26 -14.30 2.27 18.70 -12.45 -9.88 -7.98	0.000 0.015 0.000 0.000 0.000 0.042 0.000 0.000 0.000 0.000	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	
Term Sonstant Vulse duration Vverlap Freg Pulse duration*Avg power Avg power*Overlap Avg power*Freg Vverlap*Treg	6.67 56.06 50.18 -33.75 5.36 44.13 -29.38 -23.31	31.79 3.33 28.03 25.09 -16.88 22.68 22.07 -14.69 -11.65	1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18	26.94 2.83 23.76 21.26 -14.30 2.27 18.70 -12.45 -9.88	0.000 0.015 0.000 0.000 0.000 0.042 0.000 0.000 0.000	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	
Verm Vonstant Vulse duration Vverlap Treq Vulse duration*Avg power Vvg power*Overlap Vvg power*Freq Vverlap*Freq Vverlap*Freq Vvg power*Overlap*Freq tv Pt	6.67 56.06 50.18 -33.75 5.36 44.13 -29.38 -23.31 -18.84	31.79 3.33 28.03 25.09 -16.88 2.68 2.68 22.07 -14.69 -11.65 -9.42 -20.80	1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18	26.94 2.83 23.76 21.26 -14.30 2.27 18.70 -12.45 -9.88 -7.98	0.000 0.015 0.000 0.000 0.000 0.042 0.000 0.000 0.000 0.000	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	
Verm Vonstant Vulse duration Vverlap Vulse duration*Avg power Vulse duration*Avg power Vvg power*Overlap vvg power*Overlap vvg power*Overlap*Freq tv Pt Vegression Equation in U ublation depth = 5.9 - 0	6.67 56.06 50.18 -33.75 5.36 44.13 -29.38 -23.31 -18.84 ncoded Un:	31.79 3.33 28.03 25.09 -16.88 2.68 22.07 -14.69 -11.65 -9.42 -20.80 its se durati	1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18	26.94 2.83 23.76 21.26 -14.30 2.27 18.70 -12.45 -9.88 -7.98 -9.72	0.000 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	
Verm Vonstant Vonstant Vorlap Vreq Vulse duration*Avg power Vvg power*Treg Vvg power*Treg Vvg power*Overlap*Freg tt Pt Regression Equation in U kblation depth = 5.9 - 0 + 0.000 + 0.001	6.67 56.06 50.18 -33.75 5.36 44.13 -29.38 -23.31 -18.84 incoded Un: .0071 Puls 697 Pulse 037 Avg px	31.79 3.33 28.03 25.09 -16.88 22.07 -14.69 -11.65 -9.42 -20.80 its se duration ower*Freq	1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 2.14 	26.94 2.83 23.76 21.26 -14.30 2.27 18.70 -12.45 -9.88 -7.98 -9.72 06 Avg poor sr + 0.05	0.000 0.015 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	
Yerm Yonstant Yulse duration Ywerlap Teq Yulse duration*Avg power Yug power*Overlap Wy power*Freq Yerlap*Treq Ye	6.67 56.06 50.18 -33.75 5.36 44.13 -29.38 -23.31 -18.84 incoded Un: .0071 Pulse	31.79 3.33 28.03 25.09 -16.88 22.07 -14.69 -11.65 -9.42 -20.80 its se duration ower*Freq	1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 2.14 	26.94 2.83 23.76 21.26 -14.30 2.27 18.70 -12.45 -9.88 -7.98 -9.72 06 Avg poor sr + 0.05	0.000 0.015 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	
Term Jonstant Julise duration Avg power Freq Julise duration*Avg power Avg power*Overlap Vwg power*Treq Jvwg power*Overlap*Freq Ct Pt Regression Equation in U Ablation depth = 5.9 - 0 + 0.000 + 0.001	6.67 56.06 50.18 -33.75 5.36 44.13 -29.38 -23.31 -18.84 incoded Un: .0071 Puls 697 Pulse 037 Avg px	31.79 3.33 28.03 25.09 -16.88 22.07 -14.69 -11.65 -9.42 -20.80 its se duration ower*Freq	1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 2.14 	26.94 2.83 23.76 21.26 -14.30 2.27 18.70 -12.45 -9.88 -7.98 -9.72 06 Avg poor sr + 0.05	0.000 0.015 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	v S Editable

Model seems to fit well but cannot predict for increasing values after ablation depth of 70 since it is not well distributed. However what we can conclude are the significant factors from the DOE have been found for the ablation depth – please see coded coefficients above.

(Would this statement be correct since significant factors are calculated from the t-test?? Since residual analysis would be more for model fitting, so it doesn't matter about the residual graphs at all for finding significant terms??)

However since the residual vs fits was troubling I transformed the response function using square root. Here are the following results

STEP 2A: AN EXTRA SQR ROOT TRANSFORMATION WAS TRIED (NOT NECESSARY I THINK)

AFTER SQUARE ROOT TRANSFORMATION

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	8	244.368	30.5460	116.00	0.000
Linear	4	197.099	49.2748	187.12	0.000
Pulse duration	1	1.663	1.6630	6.32	0.025
Avg power	1	96.204	96.2038	365.34	0.000
Overlap	1	72.439	72.4394	275.09	0.000
Freq	1	26.793	26.7928	101.75	0.000
2-Way Interactions	3	43.892	14.6308	55.56	0.000
Avg power*Overlap	1	28.396	28.3956	107.83	0.000
Avg power*Freq	1	11.884	11.8836	45.13	0.000
Overlap*Freq	1	3.613	3.6132	13.72	0.002
Curvature	1	3.376	3.3762	12.82	0.003
Error	14	3.687	0.2633		
Lack-of-Fit	8	0.759	0.0948	0.19	0.981
Pure Error	6	2.928	0.4880		
Total	22	248.054			

Model Summary for Transformed Response

S R-sq R-sq(adj) R-sq(pred) 0.513153 98.51% 97.66% 97.17%

Coded Coefficients for Transformed Response

Term	Effect	Coef	SE Coef	T-Value	P-Value	VIF
Constant		4.084	0.128	31.83	0.000	
Pulse duration	0.645	0.322	0.128	2.51	0.025	1.00
Avg power	4.904	2.452	0.128	19.11	0.000	1.00
Overlap	4.256	2.128	0.128	16.59	0.000	1.00
Freq	-2.588	-1.294	0.128	-10.09	0.000	1.00
Avg power*Overlap	2.664	1.332	0.128	10.38	0.000	1.00
Avg power*Freq	-1.724	-0.862	0.128	-6.72	0.000	1.00
Overlap*Freq	-0.950	-0.475	0.128	-3.70	0.002	1.00
Ct Pt		-0.833	0.233	-3.58	0.003	1.00

Regression Equation in Uncoded Units

Ablation depth^0.5 = -3.05 + 0.00336 Pulse duration + 0.0593 Avg power + 0.0622 Overlap + 0.00949 Freq + 0.001332 Avg power*Overlap - 0.000215 Avg power*Freq - 0.000190 Overlap*Freq - 0.833 Ct Pt

The significant terms BCD, AB are not relevant anymore after square root

transformation. Thus can I conclude that finding significant factors should be done before transforming the function ????

The 4 in 1 residual plot