Normally distributed data is needed to use a number of statistical analysis tools, such as individuals control charts, C_{p}/C_{pk} analysis, ttests and analysis of variance (ANOVA). When data is not normally distributed, the cause for nonnormality should be determined and appropriate remedial actions should be taken. (An introduction to remedial actions for nonnormal data can be found in “Dealing with Nonnormal Data: Strategies and Tools.”)
Data transformation, and particularly the BoxCox power transformation, is one of these remedial actions that may help to make data normal. By understanding both the concept of transformation and the BoxCox method, practitioners will be better prepared to work with nonnormal data.
Transforming data means performing the same mathematical operation on each piece of original data. Some transformation examples from daily life are currency exchange rates (e.g., U.S. dollar into Euros) and converting degree Celsius into degree Fahrenheit.
These two transformations are called linear transformations because the original data is simply multiplied or divided by a specific coefficient or a constant is subtracted or added. But these linear transformations do not change the shape of the data distribution and, therefore, do not help to make data look more normal (Figure 1).
The statisticians George Box and David Cox developed a procedure to identify an appropriate exponent (Lambda = l) to use to transform data into a “normal shape.” The Lambda value indicates the power to which all data should be raised. In order to do this, the BoxCox power transformation searches from Lambda = 5 to Lamba = +5 until the best value is found. Table 1 shows some common BoxCox transformations, where Y’ is the transformation of the original data Y. Note that for Lambda = 0, the transformation is NOT Y^{0} (because this would be 1 for every value) but instead the logarithm of Y.
Table 1: Common BoxCox Transformations  
l  Y’ 
2  Y^{2} = 1/Y^{2} 
1  Y^{1} = 1/Y^{1} 
0.5  Y^{0.5} = 1/(Sqrt(Y)) 
0  log(Y) 
0.5  Y^{0.5} = Sqrt(Y) 
1  Y^{1 }= Y 
2  Y^{2} 
An example: Figure 2 shows nonnormally distributed cycle time data. Using the BoxCox power transformation in a statistical analysis software program provides an output that indicates the best Lambda values (Figure 3).
The lower and upper confidence levels (CLs) show that the best results for normality were reached with Lambda values between 2.48 and 0.69. Although the best value is 1.54 (estimate in Figure 3), the process works better if this value is rounded to a whole number; this will make it easier to transform the data back and forth. The best wholenumber values here are 1 and 2 (the inverse function of Y and Y^{2}, respectively). The histogram in Figure 4 shows the transformed data using Lambda = 1, now more normally distributed.
The BoxCox power transformation is not a guarantee for normality. This is because it actually does not really check for normality; the method checks for the smallest standard deviation. The assumption is that among all transformations with Lambda values between 5 and +5, transformed data has the highest likelihood – but not a guarantee – to be normally distributed when standard deviation is the smallest. Therefore, it is absolutely necessary to always check the transformed data for normality using a probability plot.
Additionally, the BoxCox Power transformation only works if all the data is positive and greater than 0. This, however, can usually be achieved easily by adding a constant (c) to all data such that it all becomes positive before it is transformed. The transformation equation is then:
Y’ = (Y+C)^{l}
A project team collected cycle time data from a purchase ordergeneration process. One team member created a control chart of this data (Figure 5) and was about to ask what special cause had happened for data point 40 when the Green Belt remembered that using an individuals control chart requires normally distributed data. A look at the probability plot of the data (Figure 6) revealed nonnormal distribution. Therefore, the control limits of the control chart were useless.
The Green Belt used the BoxCox power transformation to determine whether the data could be transformed (Figure 7). BoxCox suggested a best Lambda value of 0.5 for transformation (i.e., the square root of the original data). And the transformation really worked: The new probability plot confirms normality (Figure 8).
After the transformation, the Green Belt created a control chart of the transformed data and showed that the purchase ordergeneration process was actually quite stable, i.e., all variation was due to common causes (Figure 9).
Because the individual values of the transformed data have no practical meaning, the Green Belt had to recreate a control chart for the original data, but this time with the correct control limits (Figure 10). To do this, the Belt used the upper and lower CLs from the control chart of the transformed data and transformed them back into their original values. Because the transformation operation was taking the square root, the backtransformation involved squaring the transformed data:
UCL = UCL’2 = 3.4422 = 11.847
LCL = LCL’2 = 0.0542= 0.003
For the mean, the Belt used the mean of the original data.
This control chart could then be used for the ongoing monitoring of the purchase ordergeneration process.


© Copyright iSixSigma 20002016. User Agreement. Any reproduction or other use of content without the express written consent of iSixSigma is prohibited. More »
Comments
Thanks so much, it’s help me alot
Thanks for this amazingly simple explaination of a complex topic.. wonderful
Maybe it’s just because I have read several different explanations of this… and it finally sank in after reading this one.
Great explanation, well done!
Thanks.
Nice article. For Figure 10, could you explain why the mean was set to the mean of the original data instead of the square of the mean of the transformed data (i.e., 1.694^2)? Also, would the example’s steps change if BoxCox indicated LN is to be used instead of SQRT? In other words, is it okay to just follow the example if BoxCox recommends a transformation that really results in a normal distribution regardless of the recommended transformation?
The best explanation that I’ve read about this topic so far!
Hello sir
which statistical analysis software you have used? please named me..
Thank you so much for this clear explanation, much clearer than my textbook!
This is explanation is simply the best I have seen. Thank you very much.
Perfect artilcle . Thank you