Course: |
Biomedical Enginnering |
||

Curricular Unit (UC) |
Biomedical Statistics |
Mandatory |
x |

Optional |
|||

Scientific Area | MAT | Category |

Course category: B - Basic; C - Core Engineering; E - Specialization; P - Complementary.

Year: 1st |
Semester: 2nd |
ECTS: 5.5 |
Total Hours: |
||

Contact Hours | T: 30 |
TP: 30 |
PL: |
S: |
OT:3 |

Professor in charge |
Iola Maria Silvério Pinto |

T - Lectures; TP - Theory and practice; PL - Lab Work; S - Seminar; OT - Tutorial Guidance.

- Learning outcomes of the curricular unit
After approval at UC, the student should be able to:

Apply the techniques of descriptive statistics in the study of a set of data and interpret results

Apply and recognize the concepts of probabilities in assessing situations of uncertainty, particularly in the analysis of diagnostic tests

Identify the theoretical models in real situations

Apply the techniques of statistical inference as a support tool for decision making and interpret the results

Identify the use of the linear model and interpret the estimated coefficients

Identify the use of the logistic regression model and interpret the estimated odds ratios

Recognize the use of survival analysis models and interpret Hazard ratios

Identify, plan and implement appropriate statistical methodology to analytical and computational problem solving using R (free) software

Analyze, evaluate, interpret the results correctly

- Syllabus
Descriptive statistics: basic concepts, descriptive measures, graphical representations

Theory of probabilities: conditional probability, Bayes theorem, diagnostic tests, discrete and continuous theoretical models

Statistical inference: estimation, hypothesis testing

Adjustment tests

Tests for two samples: independent and paired

Tests for more than two samples: independent and related

Chi-square test and Fisher's exact test

Linear regression model

Logistic regression model

Survival Analysis: basic concepts, Kaplan-Meier estimator, Cox regression model

- Demonstration of the syllabus coherence with the curricular unit's objectives
The syllabus contents are consistent with the goals of the curricular unit, given that:

Point 1 of the syllabus aims to achieve the point 1 of the objectives;

Point 2 of the syllabus aims to achieve points 2 and 3 of the goals;

Points 3-7 of the syllabus intend to realize the point 4 of the objectives;

Point 8 of the syllabus aims to achieve the point 5 of the objectives;

Point 9 of the syllabus aims to achieve the point 6 of the objectives;

Point 10 of the syllabus aims to achieve the point 7 of the objectives;

The objectives referred to in points 8 and 9 are implemented throughout all items of the syllabus.

- Teaching methodologies
Classes are theoretical and theoretical-practical. Expository methodology is used for the presentation of theoretical matter, exemplifying with relevant problems within the Biomedical application. Then the student applies and consolidates the knowledge acquired in solving a set of problems in the context of this area of application. The computational implementation will be held in the software R (free).

The knowledge assessment comprises two strands, continuous evaluation and assessment alternatives for examination, but compulsory in both the realization of a practical work individually or in a group.

Continuous assessment is composed of two tests (with minimum of 8 values) carried out during the period of school. The assessment by examination is made up of the comprehensive examination.

- Demonstration of the coherence between the teaching methodologies and the learning outcomes
The teaching methodologies are consistent with the learning objectives, since expository methodology used to explain the theoretical concepts, specifically allows achieve all the learning objectives established for the unit. The exemplification with problems within the biomedical applications, enables students to understand how to apply the material to real situations. The proposed problems are suitable for capacity building probabilistic and statistical reasoning. Beyond the analytical resolution, the use of the R software enables the student to acquire skills to solve real challenges.

Given that the success in the course is not compatible with a timely study, it is useful to implement processes that contradict this trend. Mandatory completion of a practical work as well as the use of examples in biomedical applications, allow motivate students and provide them with a close contact with current challenges in this area of knowledge. Evaluation methods allow to ascertain whether the student has acquired sufficient knowledge to achieve the learning objectives proposed for the curricular unit.

- Main Bibliography
Agresti, A., “An Introduction to Categorical Data Analysis”, John Wiley & Sons, 3 nd Edition, 2014.

Daniel, W. W., Cross, C. L.,” Biostatistics: A Foundation for Analysis in the Health Sciences”, 10th Edition, John Wiley & Sons, Inc., 2013.

Daniel, W. W., Cross, C. L., “Biostatistics: A Foundation for Analysis in the Health Sciences”, 10th Student Solutions Manual , John Wiley & Sons, Inc., 2013.

Pestana, D. D. e Velosa, S. F., “ Introdução à Probabilidade e à Estatística”, Volume I, 2ª Edição revista e actualizada. Fundação Calouste Gulbenkian , 3ª ed. revista e actualizada, 2008.

Montgomery, D.C., Runger, G.C. “Applied Statistics and Probability for Engineers”, 6th edition, Wiley, 2014

Venables, W., Smith, D. and the R Core Team. An Introduction to R. (http://cran.r-project.org/doc/manuals/r-release/R-intro.pdf), 2013