
selecting the correct sample size is 

often the most difficult aspect of any proj-

ect. Rules of thumb are important because 

they promote discussion that facilitates the 

selection of an optimal sample size. 

The three key components of sample-

size selection are:

1.	 How accurate or confident you need to 

be: This is based on the alpha/beta error 

you select. If we need to be only 50% 

confident (flip a coin: α = 0.5), then the 

next two components don’t matter. A 

sample of one would suffice.  

2.	 How precise you need to be: Precision 

relates to the ability to understand the 

variation in the data. If the data can’t 

vary at all, then the other two compo-

nents don’t matter. Again, a sample of 

one would suffice.             

3.	 The differences you are trying to mea-

sure: Larger differences allow for easier 

decisions. If the differences you are 

trying to measure are enormous—for 

example, red versus blue or 0.1 versus 

100,000—then the other two compo-

nents don’t matter. A sample of one 

would suffice.   

Of course, assumptions always apply, 

and many other considerations affect 

sample-size selection. 

These considerations include: sampling 

cost, purpose, approach, method, capturing 

a reasonable amount of data variation, the 

type of model being developed, the under-

lying data distribution—such as normal 

or exponential—and the type of statistical 

tools being used. 

Rules of thumb
I developed and named all but the last rule 

of thumb in the following list:

•	 Trial-and-error sampling (≥ three 

samples): Pick three pieces of each 

sample to compare new and old data to 

be approximately 80% confidence in the 

results.   

•	 Design of experiments sampling (≥ 

eight samples): For most manufactur-

ing situations in which differences to 

be tested are typically large (reason-

able extremes), test costs are relatively 

high and desired statistical confidence 

is low (for example, turning knobs on 

machines). A Taguchi L8 or 2^3 full 

factorial design will likely produce high-

confidence results using only eight or 

more samples. 

•	 Central limit theorem (CLT) sampling (≥ 

30 samples): Picking samples in groups 

of 30 or more will take advantage of the 

CLT and will ensure data normalcy in 

the distribution of those groups. Note 

that a single sample of 30 doesn’t use 

the CLT. 

•	 Reliability sampling (60 samples): Per 

Beta tables, 60 samples without any 

failures equates to 95% confidence in 

95% reliability.

•	 Shewhart sampling (≥ 100 samples): 

When developing statistical process 

control, Shewhart recommended that 25 

sets of four samples be taken as a rule 

of thumb to assess process stability.

•	 Human survey sampling (≥ 500 sam-

ples): To capture a reasonable amount 

of human variation—such as race, 

religion, location, sex and age—rules 

of thumb vary between 500 and 2,000 

samples.

•	 STRUT sampling (various): Calculated 

using a formula outlined in “STRUTS: 

Statistical Rules of Thumb,”1 in which 

and

			                 
.

Some advice
Again, use these rules for planning and 

discussion purposes only. They might not 

apply to your situation. There are a lot 

of ways to accurately calculate samples 

sizes. Statistics books have paramet-

ric formulas and tables for just about 

any distribution type, or you can do an 

internet search for “sample size calcula-

tor.” Additionally, you can use the rule of 

threes outlined in Tony Gojanovic’s QP 

article.2  QP
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Sample Wise
Settling on a suitable sample size for your project is half the battle

There are lots of ways to 
accurately calculate sample sizes.   
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