
Yield % | Sigma | Defects Per Million Opportunities |
99.9997 | 6.00 | 3.4 |
99.9995 | 5.92 | 5 |
99.9992 | 5.81 | 8 |
99.9990 | 5.76 | 10 |
99.9980 | 5.61 | 20 |
99.9970 | 5.51 | 30 |
99.9960 | 5.44 | 40 |
99.9930 | 5.31 | 70 |
99.9900 | 5.22 | 100 |
99.9850 | 5.12 | 150 |
99.9770 | 5.00 | 230 |
99.9670 | 4.91 | 330 |
99.9520 | 4.80 | 480 |
99.9320 | 4.70 | 680 |
99.9040 | 4.60 | 960 |
99.8650 | 4.50 | 1350 |
99.8140 | 4.40 | 1860 |
99.7450 | 4.30 | 2550 |
99.6540 | 4.20 | 3460 |
99.5340 | 4.10 | 4660 |
99.3790 | 4.00 | 6210 |
99.1810 | 3.90 | 8190 |
98.9300 | 3.80 | 10700 |
98.6100 | 3.70 | 13900 |
98.2200 | 3.60 | 17800 |
97.7300 | 3.50 | 22700 |
97.1300 | 3.40 | 28700 |
96.4100 | 3.30 | 35900 |
95.5400 | 3.20 | 44600 |
94.5200 | 3.10 | 54800 |
93.3200 | 3.00 | 66800 |
91.9200 | 2.90 | 80800 |
90.3200 | 2.80 | 96800 |
88.5000 | 2.70 | 115000 |
86.5000 | 2.60 | 135000 |
84.2000 | 2.50 | 158000 |
81.6000 | 2.40 | 184000 |
78.8000 | 2.30 | 212000 |
75.8000 | 2.20 | 242000 |
72.6000 | 2.10 | 274000 |
69.2000 | 2.00 | 308000 |
65.6000 | 1.90 | 344000 |
61.8000 | 1.80 | 382000 |
58.0000 | 1.70 | 420000 |
54.0000 | 1.60 | 460000 |
50.0000 | 1.50 | 500000 |
46.0000 | 1.40 | 540000 |
43.0000 | 1.32 | 570000 |
39.0000 | 1.22 | 610000 |
35.0000 | 1.11 | 650000 |
31.0000 | 1.00 | 690000 |
28.0000 | 0.92 | 720000 |
25.0000 | 0.83 | 750000 |
22.0000 | 0.73 | 780000 |
19.0000 | 0.62 | 810000 |
16.0000 | 0.51 | 840000 |
14.0000 | 0.42 | 860000 |
12.0000 | 0.33 | 880000 |
10.0000 | 0.22 | 900000 |
8.0000 | 0.09 | 920000 |
Assumptions
No analysis would be complete without properly noting the assumptions made. In the above table, we have assumed that the standard sigma shift of 1.5 is appropriate (the process sigma calculator allows you to specify another value), the data is normally distributed, and the process is stable. In addition, the calculations are made with using one-tail values of the normal distribution.